Notes : Black - Scholes - Merton Model ( IEOR 4707 ,

نویسنده

  • David D. Yao
چکیده

denote an increment of the BM (with ds > 0). We also use N(μ, σ2) to denote a normal distribution with mean μ and variance σ2. Recall some of the key properties of BM: (i) B0 = 0; (ii) independent increments, i.e., dBs and dBt are independent, for any s + ds ≤ t; (iii) stationary increments, i.e., dBs follows a normal distribution N(0, ds). Note this last distribution depends only on the length of the increment, not on when it starts (hence, “shift invariant”, or stationary). Also note that the variance is proportional to the length of the increment. The BM is a Markov process, with a continuous trajectory over time. We state without formal proof the following result:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Price of a European Call Option in a Black-Scholes-Merton Model is Given by an Explicit Summable Asymptotic Series

A perturbation involving a small parameter of the Black-Scholes-Merton model with time dependent volatility is considered. A pricing formula is derived as an asymptotic series in powers of the small parameter. The summation of this series is performed, using methods of the theory of Borel summability in a suitable direction.

متن کامل

How Close Are the Option Pricing Formulas of Bachelier and Black-merton-scholes?

We compare the option pricing formulas of Louis Bachelier and Black-Merton-Scholes and observe – theoretically and by typical data – that the prices coincide very well. We illustrate Louis Bachelier’s efforts to obtain applicable formulas for option pricing in pre-computer time. Furthermore we explain – by simple methods from chaos expansion – why Bachelier’s model yields good short-time approx...

متن کامل

Quant Corner Robert Merton Merton model for valuing corporate debt

‚robert merton, who’s best known for his academic work in developing option-pricing models, published his first scholarly paper on a topic far removed from finance: Gulliver’s Travels. While an undergraduate at Columbia University in New York, he wrote a piece for a literature class that analyzed the physical impossibility of a flying island as described in Jonathan Swift’s classic work. Merton...

متن کامل

A New Spectral Element Method for Pricing European Options Under the Black-Scholes and Merton Jump Diffusion Models

We present a new spectral element method for solving partial integro-differential equations for pricing European options under the Black–Scholes and Merton jump diffusion models. Our main contributions are: (i) using an optimal set of orthogonal polynomial bases to yield banded linear systems and to achieve spectral accuracy; (ii) using Laguerre functions for the approximations on the semi-infi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004